and 450-490 °C to 22-28 kbar and 460-500 °C. At the analyzed samples were subject to a clockwise P-T trajectory, which includes an almost isothermal exhumation path. To study the P-T paths predicted by the model for the exhumed mantle and metasediments are comparable to the clock-wise P-T path obtained for the Voltri Massif. The peak metamorphic conditions vary from P=12.5 kbar and T=250°C to P=20kbar and T=420°C to T=500°C and the exhumation path is almost isothermal. In addition the size of exhumed units in the model grossly fits the size of the different rock bodies actually cropping out in the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. REFERENCES


Ophiolites are broadly distributed in the Central Eastern Desert (CED) of Egypt, occurring as clastic sediments and non-chert nodules (NCD) in the contemporaneous NYCEDO sequences. They show similar characteristics to the NCDEO geosynclinal zone geosynclinal with prevalent island-arc and minor boninitic affinities in the NCD and MORB/ISL arc associations in the SCS. Modern geochronological and geochronological data on the volcanic sections of Wizer (2000) show that the sampled rocks are representative of the NCD and SEDCO, respectively, are trachy-andesitic to trachytic.

To explain this, we present a model for the exhumed mantle and metasediments as representative of the NCD and SEDCO, respectively. The transition from the Ganos Fault. According to kinematic measurements on fault planes and some earthquake evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif.

The Ganos Fault. According to kinematic measurements on fault planes and some earthquake evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif.

The Ganos Fault. According to kinematic measurements on fault planes and some earthquake evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif.

The Ganos Fault. According to kinematic measurements on fault planes and some earthquake evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif. Such evidence suggests that buoyancy could be considered an effective mechanism that contributed to the final exhumation stages of the high-pressure rocks of the Voltri Massif.